

Approved by:

Checked by:

Issued by:

Surface-Acoustic-Wave Resonator

SPECIFICATION

LR315T2

SMD 7.3X3.3

315.00 MHz SAW

Resonator

Low Series Resistance Quartz Stability Rugged, Hermetic, Low-profile SMD7.3X3.3 Case

The R315T2 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount epoxy board. It provides reliable, fundamental-mode, guartz frequency stabilization i.e. in transmitters or local oscillators operating at 315.000 MHz.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Electrical Characteristics

	Characteristics	Sym	Notes	Minimum	Typical	Maximum	Units		
Center Frequency (+25°C)	Absolute Frequency	fc		314.925		315.075	MHz		
	Tolerance from 315.000MHz	Δf_c	2,3,4,5			±75	KHz		
Insertion Loss		IL	2,5,6		1.5	2.0	dB		
Quality Factor	Unloaded Q	Q _U			13.300				
	50 Ω loaded Q	QL	5,6,7		2.000				
Temperature Stability	Turnover Temperature	To		10	25	40	°C		
	Turnover Frequency	f _o	5,7,8		f _c		KHz		
	Frequency Temperature Coefficient	FTC			0.037		ppm/℃ ²		
Frequency Aging	Absolute Value during the First Year	lf _A I	1		≦10		ppm/y τ		
DC Insulation Resistance b	etween Any Two Pins		5	1.0			Μ Ω		
RF Equivalent RLC Model	Motional Resistance	R _M			19	29	Ω		
	Motional Inductance	L _M	570		127.677		μH		
	Motional Capacitance	См	5,7,9		1.99943		pF		
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	3.0	3.3	3.6	pF		
	Transducer Static Capacitance	CP	5,6,7,9		3.3		pF		
Test Fixture Shunt Inductar	L _{TEST}	2,7		100		nH			
Lid Symbolization (in Additi		LR315T2							

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

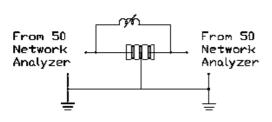
Notes:

- 5. Frequency aging is the change in f_c with time and is specified at +65℃ or less. Aging may exceed the specification for prolonged temperatures above +65℃. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 6. The center frequency, f_c , is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the 50 Ω test system(VSWR \leq 1.2:1).The shunt inductance, L_{TEST} , is turned for parallel resonator with C_0 at f_c . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_c .
- 7. One or more of following United States patents apply:4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Unless noted otherwise, case temperature $T_c{=}25\,^\circ\!\!\mathrm{C}\,{\pm}\,2\,^\circ\!\!\mathrm{C}\,.$
- 10. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 2. Derived mathematically from one or more of the following directly measured parameter: $f_c,\ IL,\ 3dB$ bandwidth, f_c versus $T_c,\ and\ C_o.$
- Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal frequency at any case temperature, T_c, may be calculated from:
 - $f=f_o~[1\text{-}FTC(T_o\text{-}T_o)^2].$ Typically, oscillator T_o is 20 $^\circ\!C$ less than the specified resonator T_o
- 4. This equivalent RLC model approximates resonators performance near the resonant frequency and is provided for reference only. The capacitance C_o is the static (nonmotional) capacitance between pin 1 and pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to C_o.

Electrical Connections

This one-port, two-terminal SAW resonator is bi-directional. The terminals are interchangeable with the exception of circuit board layout.

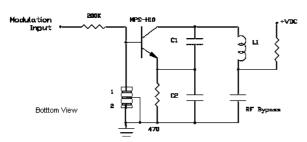


Bottom View Pin 1 2

Typical Test Circuit

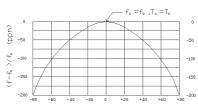

The test circuit inductor, L_{TEST} , is turn to resonate with the static capacitance, C_o at F_c . Electrical Test:

Power Test:

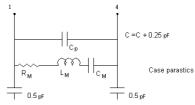


Typical Application Circuits

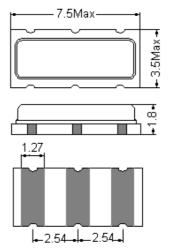
Typical Low-Power Transmitter Application:



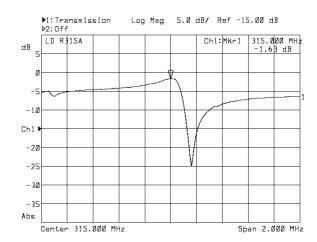
Typical Local Oscillator Application:


Temperature Characteristics

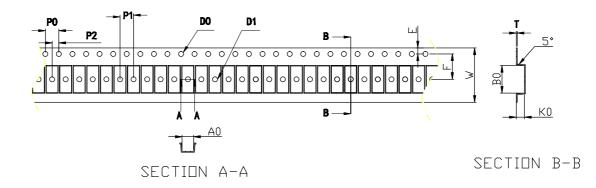
The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model


The following equivalent LC model is valid near resonance:

Case Design


Frequency Response

Taping structure

Component load: per 7' reel 2500pcs or per 13' reel 8000pcs

ITEM	W	A٥	Bo	Кo	E	F	Do	D1	P٥	P۱	P2	Т	
DIM	16.0	3.40	7.85	2.00	1.75	7.50	Ø1.50	Ø1.50	4.00	4.00	2.00	0. 30	PCS/R
TOLE	+0.30 -0.30	+0.10 -0.00	+0.10 -0.10	+0.10 -0.10	+0.10 -0.10	+0.10 -0.10	+0.10 -0.00	+0.25 -0.00	+0.10 -0.10		+0.10 -0.10	+0.05 -0.05	M/R

